On the forced matching numbers of bipartite graphs
نویسندگان
چکیده
منابع مشابه
On the forced matching numbers of bipartite graphs
Let G be a graph that admits a perfect matching. A forcing set for a perfect matching M of G is a subset S of M , such that S is contained in no other perfect matching of G. This notion has arisen in the study of .nding resonance structures of a given molecule in chemistry. Similar concepts have been studied for block designs and graph colorings under the name de/ning set, and for Latin squares...
متن کاملBipartite matching extendable graphs
Matching extendability is significant in graph theory and its applications. The basic notion in this direction is n-extendability introduced by Plummer in 1980. Motivated by the different natures of bipartite matchings and non-bipartite matchings, this paper investigates bipartite-matching extendable (BM-extendable) graphs. A graph G is said to be BM-extendable if every matching M which is a pe...
متن کاملOn Bipartite Graphs with Linear Ramsey Numbers
We provide an elementary proof of the fact that the ramsey number of every bipartite graph H with maximum degree at most ∆ is less than 8(8∆)|V (H)|. This improves an old upper bound on the ramsey number of the n-cube due to Beck, and brings us closer toward the bound conjectured by Burr and Erdős. Applying the probabilistic method we also show that for all ∆≥1 and n≥∆+1 there exists a bipartit...
متن کاملGreedy Online Bipartite Matching on Random Graphs
We study the average performance of online greedy matching algorithms on G(n, n, p), the random bipartite graph with n vertices on each side and edges occurring independently with probability p = p(n). In the online model, vertices on one side of the graph are given up front while vertices on the other side arrive sequentially; when a vertex arrives its edges are revealed and it must be immedia...
متن کاملOn the spectrum of the forced matching number of graphs
Let G be a graph that admits a perfect matching. A forcing set for a perfect matching M of G is a subset S of M , such that S is contained in no other perfect matching of G. This notion originally arose in chemistry in the study of molecular resonance structures. Similar concepts have been studied for block designs and graph colorings under the name defining set, and for Latin squares under the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2004
ISSN: 0012-365X
DOI: 10.1016/j.disc.2002.10.002